Eine Gleichung zur Fitgleichungs-Bibliothek hinzufügen

1. Die Standard-Fitgleichungs-Bibliothek

Ihre Standard-Fitgleichungs-Bibliothek enthält alle Gleichungen, die mit SigmaPlot installiert werden. Standardmäßig finden Sie sie hier: \Eigene Dateien\SigmaPlot\SPW12\Standard.jfl. (eine Kopie der Original-Bibliothek in Programme\SigmaPlot\SPW12. Auf diese Weise hat jeder Benutzer seine eigenen Bibliotheken und .ini-Dateien).

2. Fügen Sie der Standard-Fitgleichungs-Bibliothek eine Gleichung hinzu

a) Modifizieren Sie eine bestehende Gleichung

Regression Wizard - Equation		×
Select the equation to fit your data	Equation Category Polynomial	Save
$y = y_0 + dx$	Equation Name Linear Quadratic Cubic Inverse First Order Inverse Second Order Inverse Third Order	Ne <u>w</u> Edit Code
Help Cancel	Back Next	<u>F</u> inish

Klicken Sie im Regression Wizard auf den "Edit Code…"-Button.

Function - Linear	x	
Equation	Variables	
<pre></pre>	x = col(1) ' {{prevmin: 0.00 y = col(2) reciprocal_y = 1/abs(y) reciprocal_ysquare = 1/y^2 reciprocal_pred = 1/abs(f) reciprocal_predsqr = 1/f^2	
Initial parameters Constrain	nts Options	
$y_0 = F(0)[1]$ "Auto {{previous: 0}}	Iterations	
$a = P(0)[2]$ Auto {{previous: 1}}	200 Stop size	
	1	
	Tolerance	
T	0,000000	
Trigonometric units		
<u>Degrees</u> <u>Radians</u> <u>Grads</u>		
Help Add As Run	OK Cancel	

Klicken Sie auf "Add As…",

Add As		×
Equation name		
Linear		
	ОК	Cancel

geben Sie einen Namen für die neue Gleichung ein, z.B. "Linear 2", und klicken Sie auf OK.

Function - Linear 2	— X —
Equation	Variables
f = y0+a*x fit f to y "fit f to y with weight reciprocal_y "fit f to y with weight reciprocal_ysquare "fit f to y with weight reciprocal_pred "fit f to y with weight reciprocal_predsqr	x = col(1) ' {{prevmin: 0.001 y = col(2) reciprocal_y = 1/abs(y) reciprocal_ysquare = 1/y^2 reciprocal_pred = 1/abs(f) reciprocal_predsqr = 1/f^2
Initial parameters Constrai	options
$y0 = F(0)[1]$ "Auto {{previous: 0}}	Iterations
	Step size
	1
	Tolerance
	0,000000
Trigonometric units	
Help Add As Run	OK Cancel

Der Hintergrund der einzelnen Fenster wird weiß, Sie können deren Inhalt editieren, die neue Gleichung abspeichern und Ihre Daten damit fitten.

b) Kopieren Sie eine Gleichung aus einer Notebook-Datei in die Standard-Fitgleichungs-Bibliothek

Öffnen Sie die Standard-Fitgleichungs-Bibliothek (mit dem Dateityp Regression Library (*.jfl)..

			• ==	
Bibliothek "Dokumente"			Anordnen nach: Ord	iner 🔻
Vame 🔺	Ŧ	Änderungsdatum	Тур	Größe
Samples		03.11.2011 11:11	Dateiordner	
Submission Profiles		03.11.2011 11:11	Dateiordner	
🖗 Standard.jfl		08.11.2011 16:46	SigmaPlot 10.0 No	85
		10000		

Sie finden diese Datei standardmäßig unter : \Eigene Dokumente\SigmaPlot\SPW12\Standard.jfl (bzw. "Eigene Dateien\...").

Kopieren Sie die neue Gleichung (hier: "Linear 2" in "Notebook1.JNB") nach "Standard.JFL" (Rechtsklick > Kopieren und Einfügen, oder Ctrl-C/Ctrl-V).

Die Gleichung wird in einer neuen Section als "Copy of Linear 2" gespeichert. Mit Rechtsklick > Rename können Sie Section und Gleichung umbenennen. (Selbstverständlich können Sie hier auch Gleichungen aus der Datei löschen.)

Notebook Manager	ņ	×
Notebook		*
III Open Notebooks		
💭 Standard.jfl*		
🗉 💭 Polynomial		
🗈 💭 Peak		
🖅 🧕 Sigmoidal		
🗈 💭 Exponential Decay		
🖅 🧕 Exponential Rise to Maximum		
🖅 🧕 Exponential Growth		
🗈 💭 Hyperbola		
🖅 🧕 Waveform		
🗈 💭 Power		
🖅 💭 Rational		
🖅 💭 Logarithm		
⊞		
🖅 💭 User-Defined		
🗉 💭 Standard Curves		
🖅 💭 Ligand Binding		
🖃 🚺 Section 12		
ૐ Copy of Linear 2*		
1 Notebook1*		
🖻 💭 Section 1		
Data 1*		
Graph Page 1*		
Report 2*		
'∑r Linear 2*		

Speichern und schließen Sie Standard.JFL. Die neue Gleichung steht nun im Regresssion Wizard zur Verfügung:

Regression Wizard - Equation		
Select the equation to fit your data	Equation Category	<u>S</u> ave
f = y0+a*x	Polynomial Peak Sigmoidal Exponential Decay Exponential Rise to Maximu Exponential Growth Hyperbola Waveform Power Bational	Save <u>A</u> s Ne <u>w</u> Edit Code
Help Cancel	Logarithm 3D User-Defined Standard Curves Ligand Binding Piecewise Section 12	Einish

Regression Wizard - Equation		×
Select the equation to fit your data f = y0+a*x	Equation Category Section 12 Equation Name Copy of Linear 2	Save As Save As New Edit Code
Help Cancel	Back Next	Einish